Solution and microbial controls on the formation of reduced U(IV) species.
نویسندگان
چکیده
Reduction of U(VI) to U(IV) as the result of direct or indirect microbial activity is currently being explored for in situ remediation of subsurface U plumes, under the assumption that U(IV) solubility is controlled by the low-solubility mineral uraninite (U(IV)-dioxide). However, recent characterizations of U in sediments from biostimulated field sites, as well as laboratory U(VI) bioreduction studies, report on the formation of U(IV) species that lack the U═O(2)═U coordination of uraninite, suggesting that phases other than uraninite may be controlling U(IV) solubility in environments with complexing surfaces and ligands. To determine the controls on the formation of such nonuraninite U(IV) species, the current work studied the reduction of carbonate-complexed U(VI) by (1) five Gram-positive Desulfitobacterium strains, (2) the Gram-negative bacteria Anaeromyxobacter dehalogenans 2CP-C and Shewanella putrefaciens CN32, and (3) chemically reduced 9,10-anthrahydroquinone-2,6-disulfonate (AH(2)QDS, a soluble reductant). Further, the effects of 0.3 mM dissolved phosphate on U(IV) species formation were explored. Extended X-ray absorption fine structure (EXAFS) spectroscopy analysis demonstrated that the addition of phosphate causes the formation of a nonuraninite, phosphate-complexed U(IV) species, independent of the biological or abiotic mode of U(VI) reduction. In phosphate-free medium, U(VI) reduction by Desulfitobacterium spp. and by AH(2)QDS resulted in nonuraninite, carbonate-complexed U(IV) species, whereas reduction by Anaeromyxobacter or Shewanella yielded nanoparticulate uraninite. These findings suggest that the Gram-positive Desulfitobacterium strains and the Gram-negative Anaeromyxobacter and Shewanella species use distinct mechanisms to reduce U(VI).
منابع مشابه
Biogeochemical controls on the product of microbial U(VI) reduction.
Biologically mediated immobilization of radionuclides in the subsurface is a promising strategy for the remediation of uranium-contaminated sites. During this process, soluble U(VI) is reduced by indigenous microorganisms to sparingly soluble U(IV). The crystalline U(IV) phase uraninite, or UO2, is the preferable end-product of bioremediation due to its relatively high stability and low solubil...
متن کاملSolution state studies on thermodynamic parameters and complexation behavior of inner transition metal ions with creatinine in aqueous and mixed equilibria
The determination of formation constants of binary inner transition metal complexes where M=Y(III) or La(III) or Ce(III) or Pr(III) or Nd(III) or Sm (III) or Gd (III) or Dy (III) or Th(IV) andL = Creatinine have been carried out using Irving–Rossotti titration technique in aqueous mediaat different temperatures and at ionic strength. To understand more about the nature ofequilibrium involving i...
متن کاملTh(IV)/U(VI) Sorption on Modified SBA–15 Mesoporous Materials in Fixed–Bed Column
The sorption of thorium and uranium ions by functionalized SBA–15 mesoporous silica materials with Schiff base ligating groups N–propylsalicylaldimine (SBA/SA) and ethylenediaminepropylesalicylaldimine (SBA/EnSA) from aqueous solution was investigated in fixed-bed column method. The TEMPeffect of pH, sample solution volume, and the column design parameters such as sample and eluent flow rat...
متن کاملNon-uraninite products of microbial U(VI) reduction.
A promising remediation approach to mitigate subsurface uranium contamination is the stimulation of indigenous bacteria to reduce mobile U(VI) to sparingly soluble U(IV). The product of microbial uranium reduction is often reported as the mineral uraninite. Here, we show that the end products of uranium reduction by several environmentally relevant bacteria (Gram-positive and Gram-negative) and...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 45 19 شماره
صفحات -
تاریخ انتشار 2011